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Abstract: We construct all S U ( 2 )  Yang-Mills  instantons o n  8 4 that admit a certain 
symmetry ("quadrupole symmetry").  This is accomplished by an equivariant version 
o f  the "ADHM monad" classification of  instantons. This work is part o f  an attempt 
to better understand the structure o f  non-self-dual Yang-Mills connections with the 
same symmetry. 

I. Introduction 

A. Statement of Results. An instanton, in this paper, refers to a unitary connection 
with anti-self-dual curvature on a rank-two hermitian vector bundle over the standard 
four-sphere S 4. Such a bundle is determined, up to an isomorphism, by its second 
Chern number c2, and admits instantons if  and only if  c2 > 0. For a detailed account 
o f  the theory o f  instantons on S 4, see for example the book [5]. 

This article is devoted to the study o f  instantons with "quadrupole symmetry" 
[4]. To define these, let the orthogonal group SO(3)  act on S 4 C R 5 via its irre- 
ducible linear representation on R 5 (conjugation o f  traceless symmetric 3 • 3 real 
"quadrupole" matrices). Then a bundle with quadrupole symmetry consists o f  a 
rank-two hermitian vector bundle over S 4 together with a lift o f  the SO(3)-action 
on S 4 to a unitary action on the bundle. In general, to construct such lifts, one needs 
to pass from SO(3)  to its double,cover Spin(3) - SU(2) .  Finally, an instanton with 
quadrupole symmetry, or simply a symmetric instanton, consists of  a bundle with 
quadrupole symmetry together with an instanton connection which is invariant under 
the SU(2)-act ion on the bundle. 

The classification o f  bundles with quadrupole symmetry is quite simple, given 
by a pair o f  odd positive integers (n+, n_) .  The significance o f  these integers is the 
following: the singular locus o f  the SU(2)-act ion on S 4 consists o f  exactly two or- 
bits; for a point on one o f  these orbits the identity component o f  the stabilizer 
subgroup is a circle group which acts on the fiber with weights { n + , - n + }  or 
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{ n _ , - n _ } ,  depending on the orbit. In terms of these invariants, the second Chern 
number of the corresponding bundle is 

c2 = (n 2 - n 2_)/8. (1.1) 

More details on "quadrupole symmetry" can be found in the Appendix at the end of 
this article or in the articles [20] and [10]. In these two articles it was also shown 
that there are no symmetric instantons on bundles with n_ > 3. 

Here, we address the question for the remaining cases of symmetry type (n+, 1). 
We obtain a constructive classification of all instantons with quadrupole symmetry. 
The main result is the following: 

Theorem 1.1. There exbts exactly one symmetric instanton on each of  the bundles 
over S 4 with quadrupole symmetry of  type (n+, 1), where n+ is an odd positive in- 
teger. Furthermore, the corresponding symmetric A D H M  monads can be explicitly 
constructed (see below). 

To explain the method of our proof, let us recall that the classification of instantons 
was accomplished in two steps. First, a "twistor transform" provided a bijective 
correspondence between instantons and a class of holomorphic bundles over II~P 3 
[24], and second, the Atiyah-Drinfeld-Hitchin-Manin construction [2] provided a 
bijective correspondence between this class of holomorphic bundles and "ADHM 
monads" (see Sect. 3 for a review). We summarize these correspondences in the 
following diagram: 

Instantons o n  S 4 

Holomorphic bundles over ~p3 (1.2) 

ADHM monads 

Now, the functorial nature of these correspondences implies that the ADHM 
monads corresponding to instantons with quadrupole symmetry naturally admit 
an SU(2)-action, so the proof of Theorem 1.1 amounts to the construction of 
all "ADHM monads with quadrupole symmetry." To construct these, we use an 
equivariant index theorem to determine the SU(2)-action on these ADHM monads 
(Sect. 4), and then construct all these ADHM monads with quadrupole symmetry 
(Sects. 5 and 6). 

Some technical aspects of our proof, such as Proposition 5.3, may be of in- 
dependent interest for the theory of SU(2)-representations and Clebsch-Gordan 
coefficients. 

The results in this paper can be obtained by different methods. Dimensional re- 
duction and ordinary differential equations techniques yield an alternate proof [18] 
of the existence statement of Theorem 1.1, but do not provide an explicit con- 
struction of the symmetric instantons. For any n+, an equivariant version of the 
twistor transform provides a bijective correspondence between symmetric instantons 
and solutions of a certain system of  algebraic equations [19]. For n+ small, the 
algebraic equations can be readily solved, yielding an explicit construction of the 
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corresponding symmetric instanton. Other authors have previously considered equiv- 
ariant ADHM constructions for certain Abelian symmetry groups [6, 7, 8, 12, 13]. 

B. Background Our interest in instantons with quadrupole symmetry stems from a 
comparison of the theory of instantons with that of general solutions of the Yang- 
Mills equations. The latter are the variational equations for the "Yang-Mills action" 
(the L2-norm of the curvature), and the self-dual and anti-self-dual connections are 
special solutions, corresponding to the minimal critical points of  the action. The 
general solutions to the Yang-Mills equations (not necessarily self-dual or anti- 
self-dual) are rather poorly understood at present. For several years, a number of 
results [9, 23] and similarity with other problems (e.g., harmonic maps S 2 ~ S 2) 
suggested that every solution of the Yang-Mills equations over S 4 is either self- 
dual or anti-self-dual. Then in 1989, L. Sibner, R. Sibner, and K. Uhlenbeck [22] 
published a variational existence proof for non-self-dual solutions to the Yang- 
Mills equations on the trivial bundle ( c2 - -0 ) .  After that discovery we looked 
for other non-self-dual solutions and obtained the following result (compare with 
Theorem 1.1): 

Theorem 1.2 ([20, 10]). There exists a symmetric connection which is a solution 
to the Yang-Mills equations but is neither self-dual nor anti-self-dual, on each o f  
the bundles over S 4 with quadrupole symmetry o f  type (n+, n_ ), where n+ and n_ 
are odd positive integers > 3. 

Thus, according to this theorem and Formula (1.1), non-self-dual solutions to the 
Yang-Mills equations exist for all vector bundles over S 4 except possibly for those 
with c2 = :kl. (This last case remains open to date, to our knowledge). Unlike in 
the self-dual case, no solutions have been constructed explicitly, although numerical 
approximations to some of these solutions have been obtained [21]. 

Now, the twistor transform for instantons has a less familiar analogue for the 
general solutions of the Yang-Mills equations. This so-called "ambitwistor trans- 
form" provides a correspondence between Yang-Mills connections and a class of 
holomorphic vector bundles over the variety F1,3 of (1, 3)-flags in C 4. We refer to 
[16] for details and references. One of the difficulties of this approach is the absence 
of an analogue of ADHM monads, so there is no known method for constructing 
the appropriate holomorphic bundles over F1,3. This is summarized in the following 
diagram (to be compared with diagram 1.2): 

YM connections o n  S 4 

I 
Holomorphic bundles over F1,3 

I 
?? 

(1.3) 

It is plausible that an equivariant ambitwistor transform for the non-self-dual 
Yang-Mills connections of Theorem 1.2 is simpler than the general ambitwistor 
transform without symmetry. Our motivation for studying the analogous equivariant 
ADHM construction in this paper is to develop an understanding of the type of 
simpl!fication that may occur in the equivariant ambitwistor setting. 
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Instantons with quadrupole symmetry are also interesting from a rather different 
and recent point of view. There is a link between such instantons and isomonodromic 
deformations of linear ordinary differential equations, the Painlev6 transcendents, etc. 
This will be expounded in an upcoming article by the first author. This circle of 
ideas has also been recently used to study Einstein metrics with symmetry [14]. 

J.S. wishes to acknowledge helpful discussions or communications with 
R.L. Bryant, A.D. Heifer, and L.A. Sadun. 

2. SU(2)-Representations 

In this section we review some facts, mostly standard, pertaining to the representation 
theory of the group SU(2). 

Let SU(2) act on •2 via the fundamental representation. Then SU(2)  acts in 
the usual way on the vector space V := C[x, y] of polynomials on C 2. The (d + 1 )- 
dimensional subspace ~aa c ~ of degree-d homogeneous polynomials is invariant 
and irreducible. Any complex irreducible finite-dimensional representation of  SU(2)  
is isomorphic to ~ for some non-negative integer d. 

The subgroup of diagonal matrices in SU(2)  consists of matrices with (z,~) 
on the diagonal, where ]z I = 1. This subgroup acts on the monomials by xmy  n H 
2m-nxmy n, which easily yields the character Xd of ~ :  

Za = Zd + Zd-2  + ' '  " + Z - a  --  
z d + l  _ ~d+l 

z - ~  
(2.1) 

Next, we consider real and quaternionic structures. These are induced on the 
symmetric algebra ~ = S * ( ~ )  from the q u a t e r n i o n i c  representation ~11, i.e. ~ll 
(11~2) * admits an SU(2)-equivariant anti-linear endomorphism a, satisfying a 2 = - 1  
(a "structure map"), given by 

cr : ax  + b y  ~--~ bx  - K y  . 

The induced structure map on ~ is then r e a l  (a 2 = 1) on the even  part 

and  q u a t e r n i o n i c  (0 -2 = - 1 )  on the o d d  part 

~ : = ~ e ~ | 1 7 4  

The structure map on monomials is given by 

a ( x m y  n) = ( - - 1 ) m x n y  m , (2.2) 

and on a general v E ~" by anti-linear extension. 
The remaining structures on ~U are conveniently described in terms of the 

"transvectants" (Uberschiebungen) of classical invariant theory. We adopt the no- 
tation of Bryant [11]. For a non-negative integer p, the pth t r a n s v e c t a n t  is the 
SU(2)-equivariant IE-bilinear map ~ • ~ ~ ~U defined by 

(u,v>p := ~ E (-I) ~ ~pu a~v 
k=0 ~3xP-k d Y  k ~xk d Y  p - k  " 

(2.3) 
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Remark. Here is a quick proof for the equivariance of  the transvectants, as well as 
an "explanation" of the origin of Formula (2.3). Consider the SU(2)-representation 
I~ 2 (~ t~ 2 with linear coordinates x, y,x ~, J .  Then the differential operator 

0 0 ~ ~ 
O . - -  Ox O y t O y Ox t 

o is SU(2)-invariant. This follows from the SL(2, IE)-invariance of the area form N A 
0 ~-~ on (11;2) *. Now the pth transvectant applied to a pair of polynomials u and 

v in ~ is given by first applying DP/p! to u | v (thought of as the polynomial 
u(x, y)v(x ~, y )  on C 2 0  tI~ 2) followed by polynomial multiplication "U | ~ - - ~  ~ .  

[] 

The transvectants induce a bilinear form and hermitian inner product on ~U as 
follows. The restriction of the pth transvectant to ~ x ~ is an invariant bilinear 
form, and by taking direct sums we obtain an invariant bilinear form on ~ ,  denoted 
by ( . ,  �9 ). This form is symmetric on ~+ and anti-symmetric on ~_; in fact, using 
Formula (2.3), for any u,v E ~1/', 

(u, V)p = ( -  1)P(v, u)p . (2.4) 

The transvectants are compatible with the structure map o-, 

6(u, V)p = (6u, ~ (2.5) 

for any u, v C ~ ,  hence the hermitian inner product on ~//" defined by 

(u, v) := (au, v) 

is SU(2)-invariant. The monomials xmy n form an orthogonal basis, and 

Ilxmynll 2 := (xmyn,xm y n) = m!n! > 0.  (2.6) 

This verifies the positive-definitiveness of the hermitian inner product ( . ,  �9 ), and 
consequently, the non-degeneracy of  the bilinear form ( . ,  �9 ). 

Remark. The existence of a non-degenerate invariant bilinear form implies that 
each of the irreducible SU(2)-representations ~ is isomorphic to its dual, ~Ud 
(~)*. 

[] 

Tensor products of the irreducible representations ~a decompose according to 
the Clebseh-Gordan formula, 

~, |  ~ ~ ~U//+j G ~i+j-2 |  @ ~l/-J[ �9 (2.7) 

This can be verified using the character formula (2.1). 
The purpose of introducing the transvectants here is to have a concrete choice 

for the isomorphism in Formula (2.7). 

Lemma 2.1. The vector space of  C-bilinear equivariant maps ~ii x ~jj --* V has 
basis { ( . , .  )p}, where 0 < p <_ min(i, j) .  

Proof  For p in said range, the map ( . ,  �9 )p : ~//• ~jj ~ ~i+j-2p is non-zero. This 
can be verified using Formula (2.3), by checking for example that (x i, yJ)p =~0. The 
statement of the lemma now follows from Schur's lemma and the Clebsch-Gordan 
formula (2.7). [] 
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3. A D H M  Monads 

We review here briefly the ADHM correspondence between instantons and monads. 
We refer to the original paper [2] and the books [5, 16] for the detailed description 
o f  the correspondence. 

The first step, as outlined in the introduction, is to translate the problem about 
instantons on S 4 to one about holomorphic vector bundles over II]P 3. This is done 
using the twistor fibration. To fix our notation we shall quickly describe it now. 

Let us denote by lI-I the quaternionic numbers and consider ]I-'I 2 a s  a right IH 
vector space. Restricting scalar multiplication to the complex numbers C c IH makes 
IH 2 into a 4-dimensional complex vector space. Mapping a complex line in ]I-I 2 to 
the unique Ill-line containing it defines the Penrose twistor fibration n:Cp3---~ 
HIP 1, where IHP 1 is the quaternionic projective line (the space of  1-dimensional 
quaternionic vector subspaces in ~I2). HIP 1 can be identified with S 4 in a way which 
preserves all relevant structures, see [5], and we shall henceforth assume such an 
identification ~ip1 ='xa S 4. 

Now, given an hermitian vector bundle E ~ S 4, the anti-self-duality for the cur- 
vature of  a connection on E is equivalent to its pull-back on (EP 3 being of  type 
(1, 1), i.e., defining a holomorphic structure on rc*E. Conversely, given a holomor- 
phic vector bundle over C P  3 satisfying certain conditions, one can show that it 
comes from S 4 in the manner just described. 

The next step consists o f  constructing all holomorphic vector bundles over C P  3 
that come from instantons on S 4. They all turn out to arise from a certain monad 
construction, the A D H M  construction, which we now describe. 

The monads corresponding to instantons on a rank-2 bundle E --* S 4 with second 
Chern number c2(E) -- k > 0 are defined by the following data: 

(1) A complex vector space W of  dimension k equipped with a real structure. 
This means that an anti-linear map (7 is defined on W such that (72 = 1. 

(2) A complex vector space V of  dimension 2k + 2 equipped with a quaternionic- 
hermitian structure. This means that on V are defined an anti-linear map (7 such that 
(7 2 = - l ,  and an anti-symmetric C-bilinear form ( . ,  �9 ) such that (v ,v ' ):= ((Tv, v') 
is a positive-definite hermitian inner product. 

Thus we can identify W with tE k endowed with its standard real structure (conju- 
gation), and V with IH k+x ~ q~zk+2 endowed with its standard quaternionic structure 
(right multiplication by j )  and hermitian inner product (v, v'). 

(3) A II~-bilinear map 

A :  W • I~4 ----+ V 

satisfying the following three "ADHM conditions": 

a) The "injectivity condition": A(w,z) = 0 only if  w = 0 or z -- 0. 
b) The "isotropy condition": (A(w,z),A(wr,z))----0 for all z c II~ 4 and w, wrc W. 
c) The "reality condition": aA(w,z) =- A((Tw, (Tz), where 11] 4 ~ ] H  2 is 

equipped with its standard quaternionic structure. 

An ADHM monad A : W x t~ 4 ---+ V defines a holomorphic vector bundle over 
II~P 3 and a corresponding instanton on S 4 as follows: The injectivity condition means 
that for every non-zero z E t~  4 the image Uz of  A( .  ,z)  : W ~ V is a k-dimensional 
subspace o f  V, and the isotropy condition means that Uz is an isotropic subspace 
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of  V with respect to the symplectic form ( . ,  �9 ); thus Uz C Uz ~ where Uz ~ is the 
annihilator o f  Uz with respect to the symplectic form, and/~ = U~ is the required 
rank-2 holomorphic vector bundle over IEP 3. Furthermore, the reality condition en- 
sures that E ~ •p3 descends to a bundle E ~ S 4 via the twistor fibration, and 
the hermitian structure ( . ,  �9 ) on V induces an hermitian connection on E which 
turns out to be anti-self-dual. This is the instanton that corresponds to an A D H M  
monad. 

Two monads A : W x 1114 ~ V and .4 : /~ x (]]4 ~ ~ are said to be equivalent if  
there exist complex-linear isomorphisms W ---* I~ and V ---+ 17, respecting all struc- 
tures, and taking A to A 

The classification theorem of  instantons according to ADHM is then: 

Theorem 3.1 (ADHM).  Every instanton on S 4 (up to gauge equivalence) is 
obtained by the A D H M  construction f rom a unique A D H M  monad (up to 
equivalence). 

The proof  o f  this theorem relies on an "inverse construction" which associates 
to each instanton an ADHM monad that gives rise to the instanton. This involves 
pulling-back the instanton from S 4 to C P  3 (via the twistor fibration) and interpreting 
the vector spaces W and V and the map A of  the required ADHM monad in terms 
of  sheaf cohomology groups associated with the corresponding holomorphic vector 
bundle on ~p3.  One can then use twistor methods to interpret part o f  this data, 
namely the vector spaces W and V, directly in terms of  the differential geometry o f  
the instanton on $4: 

Theorem 3.2 ([5], chapter 6; [15]). Given an instanton connection on an hermitian 
vector bundle E ~ S 4, the vector spaces W and V o f  the corresponding A D H M  
monad can be identified with kernels o f  Dirac operators as follows: Let us f i x  a 
spin structure on S 4 (there is a unique one up to isomorphism) and let S = S + | S -  
be the corresponding spinor bundle. Then W can be naturally identified with the 
dual space o f  E-valued negative harmonic spinors on S 4, 

W* ~ Ker [D1 : F(E | S -  ) --~ F(E | S +)] , (3.1) 

where D1 is the Dirac operator F ( S - )  --~ F(S +) coupled to the connection on E. 
Similarly, V can be naturally identified with the space o f  E | S- -valued negative 
harmonic spinors on S 4, 

V ~ - - K e r [ D 2 : F ( ( E | 1 7 4 1 7 4  (3.2) 

where 1)2 is the Dirac operator coupled to the connection on E | S - .  

For our purposes in this paper we need G-equivariant versions o f  these two the- 
orems. These follow rather easily from the functorial properties o f  the constructions 
involved. We now outline the details. 

Let us suppose that E --~ S 4 is a G-equivariant hermitian vector brindle, where 
the group G acts on E by unitary bundle maps covering a conformal orientation- 
preserving G-action on S 4, so it makes sense to speak about G-invariant instan- 
tons on E. The G-action on S 4 then naturally lifts, via the twistor fibration, to 
a fiber-preserving action on I~P 3 (a homomorphism G ~ PGL(2,1H)-~ SO(4,1)) .  
We further need a lift o f  the G-action to a M-linear action on IH 2 (a homomorphism 
G --+ GL(2, IH)). 
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Remark. I f  no such lift exists, replacing G by an appropriate double-cover guar- 
antees the existence of a lift. I f  more than one lift exists, choose arbitrarily. I f  
G is simply-connected, as in our case of  G = SU(2),  there exists a unique such 
lift. [] 

Next, a G-invariant ADHM monad is defined to be an ADHM monad A : W x 
~ 4 ~  V, where W, V and C 4 are equipped with a G-action respecting all their 
structures, and where the bilinear map A is G-equivariant. Two G-invariant ADHM 
monads are said to be G-equivalent if  they are equivalent via G-equivariant maps. 
Similarly, G-equivalence of G-invariant instantons means equivalence by bundle 
automorphisms commuting with the G-action. 

Given a G-equivariant bundle E ~ S 4 together with a lift of  the G-action 
to 1[-12, the functoriality of  the constructions used in proving Theorems 3.1 then 
yields: 

Corollary 3.3. Every G-invariant instanton (up to G-equivalence) is obtained by 
the A D H M  construction f rom a unique G-invariant monad (up to G-equivalence), 
where the G-action on IH 2 is specified by the lift. 

We now formulate a G-equivariant version of Theorem 3.2. The G-action on 
lI-I 2 induces a lift of  the G-action from S 4 to the spinor bundles S • I f  G acts 
isometrically on S 4, then the action on S + is unitary, and the Dirac operators in 
Theorem 3.2 are G-invariant. ( If  G acts on S 4 conformally but not isometrically, 
which is not our case, then one must include appropriate conformal weights, see 
[15]). We thus obtain: 

Corollary 3.4. The kernels o f  the Dirac operators in Theorem 3.2 are G-invariant 
and the identifications in Formulae (3.1) and (3.2) are G-equivariant. 

Using this last corollary, together with a G-equivariant index theorem and a 
vanishing theorem for the Dirac operator, one can compute the G-repre- 
sentations W and V for the ADHM monad of a G-invariant instanton. This 
will be done in the next section for our case of  instantons with quadrupole 
symmetry. 

4. SU(2)-Invariant ADHM Monads 

Following Corollaries 3.3 and 3.4 of  the previous section, the classification of  in- 
stantons with quadrupole symmetry amounts to the classification of  SU(2)-invariant 
ADHM monads A : W x ~ 4  ~ V, where the SU(2)-action o n  ~ 4  ~ ~..i 2 induces the 
quadrupole SU(2)-action on S 4 ---- HIP 1 described in the Introduction. In this sec- 
tion we begin with the determination of  the SU(2)-action on C 4, W and V. Similar 
computations appear in [7] and in [17]. 

Recall from the Introduction that rank-2 vector bundles over S 4 with quadrupole 
symmetry are classified by a pair (n+, n_)  of  positive odd integers (see the Appendix 
for details). Further, recall from the Introduction that a necessary condition for such 
a bundle to admit a symmetric instanton is n_ = 1. 

Proposition 4.1. An instanton with quadrupole symmetry o f  type (n+, 1), where 
n+ = 1, 3, 5 . . . .  corresponds to an SU(2)-invariant A D H M  monad A : W x ~4 __4 V 
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with the following SU(2)-action (denoting n+ by n for simplicity) : 

W -----~ 3 ~ n _ 3 ( ~ ) ' ~ n _ 7 0 3 V n _ l l  (~) . . . .  

V ~--- 3~nnG3Vnn_4{~)3~n_6(~nn_8~)  . . . .  

Remark. Note that the decomposition of  
proceeds in steps of  2. We have for the 

n+ W V 

191 

V starts with a "gap" of length 4, and then 
first few values of  n+: 

1 {0} 
3 ~0 

7 ~U4| ~U7 e ~U3 e ~/{ 

Proof Let us first prove the isomorphism 1~4 ~ ~3 .  In light of  Corollary 3.3 and 
the remark preceding it, we need to prove that the SU(2)-action o n  IH 2 defined by 
the quaternionic-hermitian representation ~3 projects, via the twistor fibration, to the 
"quadrupole" action on S 4. Now we know that the quaternionic-hermitian SU(2)-  
action on ~I 2 projects to an isometric, hence linear, action on S 4 (in general Sp(2) 
thus projects to SO(5)),  so it is sufficient to show that this action is not reducible 
(recall that Rs admits a unique, up to equivalence, irreducible SU(2)-action, the 
"quadrupole action"). But any reducible SU(2)-representation on IR 5 must have a 
trivial summand, so we only need to check that no fixed points occur on S 4, or 
in other words, that there are no SU(2)-invariant quaternionic lines in IH 2. This 
follows from the irreducibility of the representation ~33. 

For the calculation of the SU(2)-action on W and V we need to make an 
essential use of  the following three tools: 

1. The interpretation in Theorem 3.2 and Corollary 3.4 of  the SU(2)-representa- 
tions W and V in terms of Dirac operators. 

2. A fixed-point formula of  Atiyah and Bott, applied to the SU(2)-equivariant 
index of  these Dirac operators. 

3. A vanishing theorem for solutions of  Dirac equations which renders the index 
calculation effective for our purpose. 

These matters are explained in detail in well-known references [5, 1, 3], so here 
we shall merely quote from these references the relevant facts for the calculation at 
hand. 

Recall from Theorem 3.2 and Corollary 3.4 the interpretation of W* and V as 
the kernels of  the Dirac operators D1 and D2, respectively. We can thus determine 
the decomposition of  their kernels into irreducible representations by calculating for 
each of  them the corresponding character (trace), via a fixed-point formula of  Atiyah 
and Bott [1], which we now recall briefly. 

The set-up relevant for our case is that of  an elliptic differential operator 
D : F ( F ' )  ~ F(F"), where F '  and F "  are vector bundles over a compact mani- 
fold M, together with a bundle map f : F t ~ F "  whose induced action on sections 
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F ( F ' )  --4 F ( F " )  commutes with D and all of  whose fixed points on M are isolated 
and non-degenerate. It follows that the kernel and cokemel of  D (which are neces- 
sarily finite-dimensional vector spaces by ellipticity and compactness) are invariant 
under f ,  and the formula of Atiyah and Bott expresses the difference of the traces 
of  the f-act ion on these spaces (the f - index of D)  in terms of the f -act ion at the 
fixed points: 

index(f,  D) := t r ( f ,  Ker (D)) - t r ( f ,  coKer (D)) = ~ Vp,  
P 

t r ( f  , Fp) - t r ( f  , Fp') (4.1) 
Vp := det(1 - d p f )  ' 

where p ranges over the fixed points of  f on M and d p f  denotes the action of the 
derivative of  f on the tangent space to M at the fixed-point p. We note that the 
particular form of the differential operator D does not enter this remarkable formula, 
only the details of  the action of f at the fixed points are needed. 

To apply this fixed-point formula in our case, we restrict the SU(2)-action to 
a circle subgroup, say, the diagonal subgroup of SU(2).  It is easy to see then that 
there are exactly two (antipodal) fixed points in S 4 C RS,q+ and - q +  (see the 
Appendix). These are necessarily non-degenerate fixed points as the action is by 
isometries. It follows that the Atiyah-Bott fixed-point formula can be applied to 
express the difference of the characters of  the SU(2)-representations Ker(Di)  and 
coKer(Di), i = 1, 2, in terms of the action of the circle subgroup on the various 
bundles at the two fixed points. 

We now make use of  the vanishing of the cokernels of  the differential op- 
erators D1 and D2. This follows, via a Weitzenbock-type formula for the Dirac 
operator, from the positivity of  the curvature of  S 4 the self-duality of  S 4 and 
the self-duality of  the connection on E (see, for example, Sect. 6 of  [3]). The 
fixed-point formula (4.1) thus gives the characters of  the SU(2)-representations W* 
and V. The action on W* is isomorphic to the action on W; see the Remark after 
Formula (2.6). 

We examine the details of  the circle group action at the fixed points. This 
is a routine calculation, whose outcome is summarized in the following table of  
weights: 

E S - S + TS  4 

q+ +n 4-3 4-1 4-2, -4-4 

- q +  4-1 •  +3 -t-2, 4-4 

We next use this information in the Atiyah-Bott fixed-point formula (4.1) for 
the calculation of the characters of  W and V, where we use z to parametrize the 
diagonal matrix with (z,Y) on the diagonal and Iz[ = 1: 

zw = tr(z, rV) 

(Z n -+. f fn ) ( z3  -.~- i f3 )  __ (Z n - ] - i n ) ( z  -~-~) -~- (Z _~_ ~)2  _ (Z "-~- Z ) ( Z  3 --}- i f3 )  
(Z --  Z)2(Z2 --  ~2)2 

(zn + ~n)  -- (Z + ~) 

( Z - - Z ) ( Z 2 - - Z  2) 
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and 

Xv = tr(z, V)  

(Z n (9 zn)(z3 @ Z3) 2 - ( Z  n (9 z n ) ( z  (9 Z)(Z 3 (9 Z~ 3) (9 (Z (9 i )  3 - ( Z  (9 27)2(Z 3 (9 ~3) 

~--" (Z -- -~)2(Z2 -- Z-2) 

(Z n (9 2,Tn)(z 3 (9273) -- (Z (9~)2 

(Z -- ;~)(Z 2 -- 77 2) 

Finally, with the Weyl integration formula, we decompose the above expres- 
sions for the characters o f  V and W into sums of  characters o f  irreducible S U ( 2 ) -  
representations 

;grv = Z~-3 + Z~-7 + . . .  , 

ZV : •n (9 Xn--4 (9 Zn--6 (9 . . . .  

where Za is the character o f  the (d (9 1 )-dimensional irreducible SU(2)-representation 
~t/~d, as given in Formula (2.1). We have obtained the decompositions in the statement 
of  the proposition. [] 

5. The SU(2)-Equivariant ADHM Conditions 

The next two sections form the most technical part o f  the paper and consist o f  
the determination of  the SU(2) -equ ivar ian t  A D H M  maps A : W x ~4 _+ V, with the 
SU(2) -ac t ion  on C 4, W and V as given in Proposition 4.1 o f  the previous section. 
A fortuitous property of  these representations is that they are mul t ip l ic i ty - f ree ,  i.e., 
in their decomposition into irreducible summands each ~aa appears at most  once. 

Let us first establish some notation. For an instanton with quadrupole symmetry  
of  type (n+, 1), denote the odd integer n+ by 2m + 1 and let 

A I : ~Zl X ~3 ---+ V , 

l = m -- 1, m -- 3 . . . .  (ending with l = 0 or 1 depending on the parity of  m), be 
the restriction o f  the bilinear map A : W x ~3 --* V corresponding to the summand 
~2t C W in the decomposition of  Proposition 4.1: 

W ~--- 3~2(m_1) @ 3~2(m-3) ( 9 " . .  (5.1) 

The Clebsch-Gordan decompositions 

~/#2l | ~3 ----- ~ t + 3  (9 ~/@+1 (9 ~2/-T (9 ~/#2l-3 for l > 2 ,  

~ 0 |  ~ ~3 ,  

and Lemma 2.1 allow us to write A1 uniquely as a linear combination o f  transvectants 

A l : a t , 0 ( - , ' } o ( g a / , l ( ' , ' ) ~ ( g a l ,  z ( . , ' ) 2 ( 9 a / , 3 ( ' , ' ) 3  for 1 > 2 ,  

A1 = a l , 0 ( ' , "  )0 (9 al,1 ( ' , ' ) 1  (9 a l , 2 ( - , "  )2,  

A0 = a0,o(', ")0. 
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We call the complex numbers {al,p} the coefficients of  the SU(2)-invariant monad. 
Note, by Proposition 4.1, that am-l,1 = 0 because o f  the "gap" ~2m-1 9~ V, but 
any other coefficient may be non-zero. It is clear that an SU(2)-invariant monad is 
determined uniquely by its coefficients. 

We now formulate the ADHM conditions for an SU(2)-invariant monad in terms 
of  its coefficients. 

Theorem 5.1. Let m be a nonneoative integer, and let n+ = 2m + 1. For an SU(2)-  
equivariant bilinear map A : W x IE 4 ~ V, where the SU(2)-action on the vector 
spaces is as stated in Proposition 4.1, the A D H M  conditions o f  Sect. 3 are equiv- 
alent to the followin9 conditions on the coefficients {al,p}: 

a) The A D H M  reality condition is equivalent to al,p E IR for all l and p. 
b) The A D H M  injectivity condition is equivalent to al, o4=O for all l. 
c) The A D H M  isotropy condition is equivalent to the followin9 two conditions: 

i) The "diagonal isotropy condition": 

2 ( 2 l §  1) 2 2l(2l  - 3) 2 
a"2 -- ( ~ - ~  al'~ + ( - f [ - - i ~  al'l for all l > 1, 

(2l + 2)(21 + 9 ( 2 l +  1) 2 
a 2 5)a~o" for all l > 2 ,,3 = ~ - [ ~  , - ~ - - - l  ~a , , ,  = , 

ii) The "off-diagonal isotropy condition": 

al, oat+2,2 = at, lat+2,3 for all 1 < l < m - 3 . (5.2) 

Proof o f  5.1 a) and b). 

a) Follows immediately from the ~-antilinearity o f  o- and its compatibility with 
transvectants (Eq. (2.5)). 

b) Suppose the ADHM injectivity condition holds for the SU(2)-invariant monad 
A : W x ~U3 --+ K Let w = x  2l C ~ 2 l  C W and let z = x  3 C ~3. Then (w,z)o = X  2/+3 =~0 ,  

while (w,z)p = 0 for any p > 1. Therefore A(w,z)  = 0 iff al, o = 0, so we have 
proved that ADHM injectivity implies al,04:0 for all l. 

Conversely, suppose that al,04:0 for all l, and that A(w,z)  = 0 for some w C W 
and some non-zero z E ~3. We need to prove that w = 0. Using the direct sum de- 
composition o f  W (Eq. (5.1)), write w = Wm_ 1 § Wm_  3 §  ", where wl E ~2t C W. 
Our assumptions imply that (Wm-bZ)o = 0, but since the 0 th transvectant is just 
multiplication of  polynomials, this implies W,n-1 = 0. We now proceed by induc- 
tion. I f  l < m - 3 and wz+2 = 0, our assumptions imply that (wt,z)o = 0, but this 
again implies wl = 0. So we have now proved that if  al ,04:0 for all l, then the 
ADHM injectivity condition holds. [] 

To prove part c), we first note that the isotropy condition can be reformulated as 
follows: associate to a monad A the C-quadrilinear form 

I A : W x  W x [~4 x ~4  --~ ~ ,  

(w,w' ,z ,z ' )  ~ (A(w,z) ,A(w' , z ' ) ) .  (5.3) 

Then the isotropy condition 

IA(W, Wt,Z,Z)  = 0, W,W t C W, 2 C ~4  , 
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means that for fixed w,w' the bilinear form Ia(w,w', �9 �9 ) is anti-symmetric, so that 
its symmetrization in the last two arguments vanishes, 

I + := G(w,w' , z , z ' )  +IA(w,w' ,z ' , z )  = O. 

Next, we define the ~-quadrilinear forms 

Fl, k,p : ~21 X ~2k X ~ X ~ ---~ ff~ , 
t I (W, Wt,Z,Z t ) H ((W,Z}p+l_min(l,k) , (W , z  }p+k--min(l,k)) , (5 .4)  

and their symmetrization on the last two arguments 

F~,k,p(W, Wt,Z,Z ' )  :=  Fl, k,p(W, Wt,Z,Z t) + Fl, k,p(W, Wt ,Zt ,Z)  . (5.5)  

Lemma 5.2. 

a) The vector space qll, k of  SU ( 2 )-invariant ff~-quadrilinear forms 

~ l X ~ k X ~  X ~ S ~  

has basis {Ft, k,p}, where 0 < p < min(l + k, 3 ) -  I 1 - k  I. 
b) I f  l = k (mod2), then the subspace qY+ t,k c q/l,k o f  forms which are symmetric 

in the last two arguments has dimension: 

i) min(l, 2) if  k = l, 
ii) 1 if [k - II = 2 and min(k, l) => 1, 

iii) 0 in all other cases. 

Proof. 

a) Immediate from the Clebsch-Gordan formula (2.7). 
h) q/+ is the subspace of invariant vectors in ( ~ l  | ~2k) Q s z ( ~ ) ,  where the l,k 

symmetric square $ 2 ( ~ ) =  ~6 | ~ .  The results now follow from the Clebsch- 
Gordan formula. [] 

It follows that the set {F~,k,p} spans the vector space qr but that this set is not 
linearly independent in general. 

Proposition 5.3. I f  l - k (mod2), then the followin9 relations constitute a bas& 
+ ql+. for the linear dependence of  the set {Fl, k,p} in t,k. 

i) The "diagonal relations", i f  k = h 

(2l + 1) _+ (2l + 2 ) ( 2 l +  5)F  if l > 2; 
F + - ( 2 l -  1) 2FU'2 - ~l--~1)2 /,+/,3 = 

l,l,O = _3F~, l ,  2 i f  l = 1; 

0 i f l = O ,  

2l(2l - 3 )  9(2l + 1) ~+ 
F + - ( - - ~ _  ]__Ft,+,,2 + ~ - -  ]3~,, , ,3 if l > 2; 

U,1 2F~,l, 2 if  I = 1; 

o = o .  
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ii) The "off-diagonal relations" i f  [k - 11 = 2 and k , l  > 1: 

F + -- _ F  + l,k,O -- 1,k, 1 " 

iii) No non-trivial relations in all other cases. 

Proo f  The number of  linear dependence relations is the difference between the 
dimension of  ~ and the dimension of  ~J/+k, both of  which are computed in 
Lemma 5.2. To find a basis, we evaluate F~,k,p(W, Wt,Z,Z t) for appropriate choices 

of  arguments. 

i) Substituting w = xay 2l-~, z = y3, w ~ = a w  and z ~ = a z  into Formulae (5.4), 
(5.5) and (2.3), we get 

F~,t,p(W, aw, z, az )  = <(w,Z>p, <~rw, aZ>p> + ((w, ~Z>p, <o-w,Z>p) 

((W,Z)p, ff(W,Z)p) -- ((W, ~Z)p, G(W, ffZ>p) 

II<w,~z>pll 2 -  II(w,z>pLI 2 , 

l x  a ~3py21_ a OPx3 2 

~3yp OxP 

~ .  ~px a Opy3 2 
y2l-a  

~ x P  OyP " 

Evaluating this expression with Formula (2.6) for sufficiently many distinct 
values of  a gives a linear system of  equations. The diagonal relations form a 
basis for the space of  solutions. 

ii) The proof  is similar, but even simpler. Since the dimension of  the subspace 
is at most 1, it suffices to choose any argument for which F + does not l, 1+2, 0 
vanish. 

iii) F + = 0 in all other cases since ~ +  is zero-dimensional. [] l,k,p I,k 

Proof  o f  5.1 c). The A D H M  isotropy condition I + = 0 restricted to ~2l • ~ k  • 
~U3 • ~ is equivalent to 

min(l+k,3)-tl-k ] 
E + al, p+l_min(l,k)ak, p+k_min(l,k)Fl, k,p = 0 .  (5.6) 
p=0 

By the dimension count of  Lemma 5.2 b), there are only two non-trivial cases: 

i) When k -- l, Eq. (5.6) reduces to 

min(21, 3) 
E a 2,pF[, t ,p=O. 
p=0 

This equation is equivalent, by Proposition 5.3 i), to the diagonal isotropy 
condition of  Theorem 5.1 c)i). 

ii) When Ik - 11 = 2 and min(k, l) > 1, then either k = l + 2 > 3 and Eq. (5.6) 
reduces to 

1 
+ = 0 (5.7) al, pal+2, p+2Fl, l+2, p 

p=0 

or l = k § 2 > 3 and Eq. (5.6) reduces to a similar equation. In either case 
the equation is equivalent, by Proposition 5.3 ii), to the off-diagonal isotropy 
condition of  Theorem 5.1 c)ii). [] 
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Corollary 5.4. Suppose the coefficients {at, p} satisfy the equivariant A D H M  con- 
ditions. Then 

ak,1 _ ak+2,2 + 0  (5.8) 
ak,  O ak+2,3 

for all l <_ k < m -  3. 

Proof  This is non-trivial only if m > 4. All al, p are real by the A D H M  reality 
2 condition. By the A D H M  injectivity condition ak+2,0 4: 0, so ak+2, 0 > 0. Substituting 

into the A D H M  diagonal isotropy condition, we obtain 2 ak+2, 2 > 0, SO ak+2,2 4=0. Also 
ak, o 4:0 by the injectivity condition, so ak, oak+2,2 4: 0. From the off-diagonal isotropy 
condition we conclude that ak, 1 4:0 and ak+2,3 4: 0. Dividing the off-diagonal isotropy 
condition by ak, oak+2,3 gives the result. 

6. Solutions of the SU(2)-Equivariant ADHM Conditions 

The existence statement of  Theorem 1.1 is established by the following explicit 
formula. 

Proposition 6.1. For every non-negative integer m, the coefficients (at, p} de- 
fined by 

at, p = V/(2m + 1 )2 ( (2 /+  1)p  2 - ( 6 l -  1)p  + 6 l -  3) 2 - ( 2 l -  1 )2 (2 /+  3) 2 > 0 ,  

satisfy the equivariant A D H M  conditions o f  Theorem 5.1. 

Proof  The proof  consists o f  merely substituting the coefficients at, p into the 
equivariant A D H M  conditions of  Theorem 5.1. Clearly am-l,l = 0. The inequal- 
ity l < m - 1 is equivalent to ( 2 / +  3) 2 =< (2m + 1) 2, and the reality and non- 
negativity of  the at, p are immediate from: 

a 2 = (2/ 1)2(9(2m 4- 1) 2 - (2l  + 3) 2) > 0 1,0 - -  

al,12 = ( 2 / - -  1 )2( (2m+ 1) 2 - ( 2 / + 3 )  2 ) => 0 ,  

al,22 = (2l + 3)2((2m + 1) 2 - (2/ - 1) 2) > 0 , (6.1) 

al,32 = (2l + 3)2(9(2m + 1) 2 -- (2l  -- 1) 2) > 0 . 

The first inequality implies the injectivity condition al,0 4:0. Verification of  the di- 
agonal and off-diagonal isotropy conditions requires a simple calculation. [] 

To prove uniqueness, we need to study the equivalence of  SU(2)-invariant  
monads. I f  A : W • 112 4 ~ V is an SU(2)-invariant  monad then, by definition, any 
real SU(2)-equivariant automorphism W ~ W and unitary quaternionic SU(2)-  
equivariant automorphism V ~ V take A into an SU(2)-equivalent  SU(2)-invariant  
monad A. By Schur 's  lemma, the restriction of  an equivariant real invertible map 
W --+ W to ~U2t C W is the identity map multiplied by a non-zero real number  
71. Similarly, the restriction of  an equivariant unitary quaternionic map u / ~  V to 
~ .  C V is the identity map multiplied by ~cj = =El. The coefficents {~l,p} o f / 1  a r e  
then related to the coefficients {at, p)  o f  A by 

al ,  p = l s  p �9 (6.2) 
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Definit ion 6.2. Let  k be an integer. An SU(2)-invariant monad A is called k- 
canonical i f  its coefficients {al, p} satisfy the following conditions for all l > k: 

i) al, p ~ 0 for  all p. 
i i)  at, o = 1. 

The uniqueness p roof  for Theorem (1.1) proceeds by  bringing SU(2)- invar iant  
A D H M  monads into 0-canonical form. 

L e m m a  6.3. Every SU(2)-invariant A D H M  monad is SU(2)-equivalent to a O- 
canonical monad. 

Proof  Let {al, p} be the coefficients o f  an SU(2)- invar iant  A D H M  monad A. We 
shall first construct an SU(2)-equivalent  ( m -  1)-canonical monad with coefficients 
{~l,p}. I f  m = 0, the set of  coefficients is empty, so A is tr ivially 0-canonical.  Sup- 
pose m _> 1. Let tr = 1 and ~m-1 --- 1/am-l,o, so ~m--l,0 = 1. I f  m = 1, we are 
done. Suppose m > 2. As always, we must have ~m-l,1 = 0. Choose ~C2m-3 so that 

a m - l , 2  ---- tCZm-3]~m-lam-l,2 > O. I f m  = 2, we are done. Suppose that m > 3. Choose 
tCZm_ 5 SO that a m - l , 3  = ls ~ O. Letting ~m-3 = K2m-3/am-3,0, w e  o b -  
t a in  ~m-3,0 = 1. I f  m = 3, we are done. Suppose m > 4. Letting any remaining tcj = 

1 and 7t = 1, we have constructed an (m - 1 )-canonical SU(2)-equivalent  monad .4. 
We now use induction on k. Given a (k + 2)-canonical  SU(2)- invar iant  A D H M  

monad B with coefficients {bl, p), we shall construct an SU(2)-equivalent  k- 

canonical monad /~ with c o e f f i c i e n t s  {b / , p} .  Suppose m > 4. Let 0 < k < m -  3 
with k = m -  1 (mod 2). Let Kj = 1 f o r j  > 2k + 1. Let 7k = 1/bk, o, and 7l = 1 for 

l > k. Then/~k,0 = 1. I f k  = 0, we are done. Assume that k > 1. Since B is (k + 2)- 
canonical bk+2,2 and bk+2,3 are positive, and Corollary 5.4 implies bk, l/bk, o > O, 
proving the posit ivi ty of/~k,1 = 7kbk,1 = bk,1/bk, o. Choose Xzk-1 so that /~k,2 > 0. 

I f  k = 1, we are done. Assume k > 2. Choose K2k-3 SO that /~k,3 > 0. Letting any 
remaining Kj = 1 and 7l = 1, we have constructed a k-canonical  SU(2)-equivalent  

monad/~ .  [] 

L e m m a  6.4. For any non-negative integer m, there is at most one O-canonical 
invariant A D H M  monad. 

Proof  For a given m, suppose that {al, p} and {all, p} are both coefficients o f  
invariant 0-canonical A D H M  monads. We shall show that ~tt, p = al, p for all l 
and p.  I f  m = 0, the statement is trivial. Suppose m > 1. Because both are 0- 
canonical, am-l,0 = am-l,O = 1. I f  m = 1, we are done. Suppose m > 2. We al- 
ways have 6,n-1,1 = am-1,1 = 0. By the diagonal isotropy condition o f  Theorem 5.1 
c)i) ,  ~2 2 am_l, 2 = am_l,2, SO a m - l , 2  = am-l,2 by non-negativity.  I f  m = 2, we are done. 
Suppose m > 3. Again  by the diagonal isotropy condition and non-negativity,  

am-l,3 = am-l,3. I f  m = 3,~0,0 = a0,0 = 1 and we are done. 
Suppose m ~ 4. Let 0 < k < m - 3  with k = m -  1 (mod 2). We  shall show 

that i f  ~tk+E,p = ak+2,p for all p,  then ~k, p = ak, p for all p.  Induction on k then com- 
pletes the proof  o f  the lemma. I f  k = 0, only p = 0 occurs, and the statement is 
trivial because ao,0 = ao, o = 1. Assume k > 1. Since both monads are 0-canonical,  
Corollary 5.4 implies ak,1 =-ak+2,2/ak+2,3 and ak,1 = ~tk+2,2/~lk+2,3. By assumption 

ak+2,p = ak+2,p for all p,  so t~k,1 = ak,1. Using this and 6k, o = ak, o = 1 in the di- 
agonal isotropy condition gives ak, 2"2 __ ak,2 , 2  and also ak,3~2 = ak,32 i f  k => 2. From 
non-negativity we conclude that ~k,p = ak, p for all p .  [] 
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The uniqueness statement o f  Theorem 1.1 follows: 

Corollary 6.5. For any non-negative integer m, there is at most one SU(2)-  
equivalence class of SU(2)-invariant ADHM monads, hence at most one #auge 
equivalence class of SU(2)-invariant instantons on the bundle of symmetry type 
(n+, n_ )  = (2m + 1, 1). 

Proof For a given m, suppose A and B are SU(2)-invariant A D H M  monads. By 
Lemma 6.3, there exist 0-canonical SU(2)-invariant ADHM monad A and B that 
are SU(2)-equivalent to A and B, respectively. By Lemma 6.4, A =/~.  Therefore A 
and B are SU(2)-equivalent, and correspond, by Corollary 3.3, to instantons which 
are SU(2)-equivalent - hence gauge equivalent. [] 

Note that the SU(2)-invariant ADHM monads o f  Proposition 6.1 are not 0-canonical. 

7. Examples 

We exhibit the first few examples, using Lemma 6.3 to bring the A D H M  monads 
o f  Proposition 6.1 into 0-canonical form. 

The invariant monad with m = 0, and (n+,n_) = (1, 1), is trivial, corresponding 
to the fiat connection on the trivial bundle c2 = 0. W --- {0}, so A is the zero map, 
and the set o f  coefficients is empty. 

The invariant monad with m = 1, and (n+, n_ ) = (3, 1 ), correpsonds to the stan- 
dard ("SO(5)-invariant") instanton on the bundle with c2 = 1. The monad is de- 
scribed by the single coefficient a0,0 = 1. Neither the diagonal nor the off-diagonal 
isotropy condition enters. 

The invariant monad with m = 2, and (n+,n_)= (5, 1), has c2 = 3, and has 
coefficients: 

al,0 = 1, a1,1 = 0, al,2 = x/3.  

The diagonal isotropy condition enters, but the off-diagonal does not. 
The invariant monad with m = 3, and (n+,n_)= (7, 1), has c2 = 6, and has 

coefficients: 

a2,o = 1, a2,1 = O, a2,2 = V / ~ ,  a2,3 = x/6, 

a0,0 = 1 . 

Both the diagonal and off-diagonal isotropy conditions enter in this, and all following 
monads. 

The invariant monad with m = 4, and (n+,n_)= (9, 1) has c2 = 10, and has 
coefficients: 

a3,0 = 1, a3,1 = 0, a3,2 = X/if/25, a3,3 = V / ~ / 2 5 ,  

al,0 = 1, al, l = V/7-/88, al,2 = V / ~ 4 4 .  

The invariant monad with m = 5, and (n+,n_)= (11, 1), has c2 = 15, and has 
coefficients: 

a4,0 = 1, a4,1 = 0, a4,2 = V/-9-/49, a4,3 = 1 V / ~ / 4 9 ,  

a2,0 = 1, a2,1 = X/9/130, a2,2 = 3X~3/585,  a2,3 = ~ / 2 6 ,  

a0,0 = 1. 
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Appendix 

The purpose of this appendix is to present the classification of  rank-2 hermitian 
vector bundles over S 4 with quadrupole symmetry, in terms of a pair of  positive 
odd integers (n+, n_ ), as mentioned in the Introduction. The reference here is Sect. 2 
of [10]. 

The idea is a variant of  the usual "clutching" construction for vector bundles 
on a sphere. We recall that this construction is based on viewing the sphere as a 
union of two hemispheres (disks), intersecting along an equator (a sphere of  one 
dimension lower); since each hemisphere is homotopically trivial (contractible) any 
bundle over it is trivial, and so any bundle over the sphere can be obtained by the 
"gluing" of trivial bundles over the hemispheres via a map from the equator to the 
structure group (the unitary group for hermitian bundles). 

In our case of  bundles with "quadrupole symmetry," i.e. SU(2)-equivariant her- 
mitian vector bundles over S 4 with the SU(2)-action on $ 4 C  IR 5 given by the 
5-dimensional irreducible representation of SU(2), we have a similar construction. 
For this we need to examine first the orbit structure of  the SU(2)-action on S 4. 
One then checks that (1) a generic orbit is 3-dimensional; (2) there are two singu- 
lar orbits; and (3) S 4 is the union of  two tubular neighborhoods (equivariant disk 
bundles), one of each of the two singular orbits, intersecting along a generic orbit. 

In general, for a smooth action of a compact group, a tubular-neighborhood of 
a given orbit can be "radially" contracted, equivariantly, to the orbit. It follows 
that an equivariant bundle over such a neighborhood is the pull-back, under the 
contraction, of  an equivariant bundle over the orbit, i.e. a homogeneous bundle, and 
thus given as the bundle associated to a representation of the stabilizer group of a 
point on the orbit. The "gluing" of such bundles over distinct tubular neighborhoods 
is done via an equivariant isomorphism between the restrictions of  the bundles to 
the intersection of the tubular neighborhoods. 

To describe the situation precisely in our case of  "quadrupole symmetry" we 
need to fix first some notation. It is convenient to identify our symmetry group 
SU(2) with Sp(1), the group of unit quaternions. This can be done by, say, con- 
sidering the quaternions IH as a right 112 vector space with a II~-basis {1,j}, and let 
Sp(1) act by left multiplication. Next, we take as a model for the 5-dimensional 
irreducible representation of Sp(1) the space of traceless real quadratic forms q 
on the Lie algebra of Sp(1) (imaginary quaternions), with the Sp(1)-action in- 
duced by the adjoint action on the Lie algebra, and norm given by IlqLI 2 -= t r ( q2 ) .  
The Sp(1)-action preserves this norm, so we obtain an Sp(1) action on the unit 
sphere S 4. More explicitly, if  we fix a basis for the Lie algebra of  Sp(1), say 
{i,j,k}, with the dual basis {a, fl,7}, then the coefficients of  a traceless quadratic 
form q constitute a 3 x 3 traceless symmetric matrix, so that the Sp(1)-action fac- 
tors through the usual conjugation action of SO(3) on the space of symmetric 
matrices. 

The orbits of  the Sp(1)-action are parametrized by the set of  3 eigenvalues of  a 
form. Generically, the 3 eigenvalues are distinct, so the two singular orbits consist 
exactly of  those forms with a degenerate eigenvalue, with the sign of the degenerate 
eigenvalue distinguishing between the two singular orbits. 

Now let us fix two points on S 4, one on each of the two singular orbits, 
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and denote the corresponding stabilizer groups by H+ and H_,  respectively; 

H + = { e  k~176 H_ = {e i~ t3 {kei~ 0 < 0 < 2n.  

Then picking a point q0 in the intersection of the normal disks at q+, 

= ~ ( ~ 2 _ 7 2 ) ,  q0 

the stabilizer group at q0 is 

P := H+ fqH_ = { •  i j , + k } .  

With this notation understood, the clutching construction for bundles with 
quadrupole symmetry can now be stated: 

Proposition 7.1. There is a bi/ective correspondence between SU(2)-equivalence 
classes of  SU(2)-equivariant hermitian vector bundles over S 4 and equivalence 
classes of  triples (p+,p-,49), where 

(1) p+ are linear unitary representations of  H+ on hermitian vector spaces 
V+, respectively; 

(2) ~b is a F-equivariant unitary isomorphism V+ ~ V_; and 
(3) two triples (p+,p_, dp) and (~+,~_, ~)  are equivalent i f  there exist H+- 

equivariant unitary isomorphisms V+ ~ 17"+, takin9 (a to ~. 

The next step then is to study the representations of the stabilizers H+ and their 
restriction to F. The calculation is based on the technique of  induced representations 
which we now review briefly. 

Let K be a compact Lie group with a subgroup K'  of finite index. There are 
two additive maps relating the complex representation tings RK and RK', 

i* : RK ~ RK' 

and 
i. :RK'  --* RK . 

The first is restriction V H V b, and the second induction W ~ MapsK,(K, W ) =  
F(K xK, W). These are related by Frobenius reciprocity 

(i*V,W) = ( V , i . W ) ,  

for any V E RK and W E RK', where ( . , . )  denotes the standard pairing generated 
by declaring for two irreducible representations A and B (of the same group) that 
(A,B) = 1 if A and B are isomorphic, else (A,B) = 0. Reciprocity implies that all 
representations of  K can be obtained by induction from K': taking an irreducible 
V c RK, 

(i.i* V, V) = (i* V, i* V) > O, 

so V can be obtained as one of the irreducible components of the induced repre- 
sentation i.i* V. 

Now back to the representations of H+, beginning with H_. We find its rep- 
resentations by inducing from its index-2 subgroup H i  := {e i~ l0 < 0 < 2rt}. Let 
2 E RH!  denote the basic 1-dimensional representation, then RH!  = Z[2, 2-1]. The 
following is obtained by a calculation using Frobenius reciprocity. 
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P r o p o s i t i o n  7.2. For all n, m C 7l, 

1) i ' i . 2  n-~ 2 n + 2 -n. 
2) i .2 n is irreducible i f  n=~O. 
3) i.1 = 1 + a, where a is the "sign representation" (1 on H "  and - 1  on the 

other component). 
4) i .2 n ~- i .2 m iff Inl = Iml. 

Corol lary  7.3. A complete list, without repetitions, o f  irreducible representations 
o f  H_ is 9iven by 

1,0-,i.2", n = 1,2,3 . . . . .  

For H+ we have the same result with the obvious notational reinterpretation. 

Next, we restrict the H+  representations to the subgroup / ' .  Using a character 
table f o r / "  we find that the group F has 5 irreducible representations: 1,0-1,0-2,0-3, 
and t1~ 2. The first 4 are 1-dimensional: 1 is the trivial, 0-1 is 1 on {-4-1,• and - 1  
on the rest, 0-2 and 0-3 similarly with j and k instead of  i, respectively, t~ 2 is the 
restriction to /" of  the standard 2-dimensional Sp(1)-representation (denoted by ~//~1 
in Sect. 2). A simple calculation then yields: 

Proposi t ion 7.4. Upon restriction f rom H_ to F, 0- restricts to 0-1 and i .2 n restricts 
to 

~2 i f  n is odd, 
1 + 0-1 i f  n = 0 (rood 4) ,  
0-2 "}- 0"3 i f  n -- 2 (mod 4). 

The corresponding result for H+ is 

Proposi t ion 7.5. Upon restriction f rom H+ to F, 0- restricts to 0-3 and i .2  n restricts 
to 

~E 2 i f  n is odd, 
1 + 0-3 / f n  = 0 ( m o d 4 ) ,  
0-1 + 0-2 i f  n - 2 (mod 4). 

Comparing the last two propositions with Proposition 7.1 we obtain: 

Corol lary 7.6. A complete list, without repetitions, o f  equivalence classes o f  non- 
trivial triples (p+, p_, 4), with dim(V+) = 2, and thus, accordin9 to Proposition 7.1, 
of  non-trivial rank-2 vector bundles over S 4 with quadrupole symmetry, is 9iven 
by 

(i,2n+,i.2 n-, 1), n+ = 1,3,5 . . . .  

Finally, a word about Chern numbers and our orientation convention. It is rather 
straightforward to derive a formula that expresses the second Chern number of  our 
bundles with quadrupole symmetry in terms of  the integer invariants n+ and n_ of  
the last corollary. This can be done either by an explicit integration of  a curvature 
expression using an invariant connection (as in [20, 4]), or by a localization principle 
for equivariant cohomology classes (as in [10]). Either way, to arrive at Formula 
(1.1) in the Introduction for the second Chem number c2 one needs to integrate the 
second Chern class of  the bundle over S 4, so an orientation choice for S 4 affects 
the sign o f  c2. We choose the orientation for S 4 that fixes the sign of  c2 to be as 
given in Formula (1.1). 
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